06Jun

In the heart of Silicon Valley is a biotech laboratory run by robots. They carry out experiments ordered by scientists anywhere in the world who simply login to the lab, describe their project, set options like the cells to use or the types of analyses to perform, and go on to do other things while the robots do the rest.

The Strateos lab in Menlo Park, California is as sophisticated as many research facilities and it becomes more so all the time. In partnership with Eli Lilly, Strateos opened a second robotic cloud laboratory in San Diego this year that focuses on the drug discovery process.

Lilly is using part of this Life Sciences Studio for its own projects. The remaining capacity is available to startups in the biosciences to run their own experiments, providing them access to tools and processes few of them can afford on their own.

Though still rare, fully robotic, remote laboratories like these are the future of drug development and biological research. They’re a clear sign of just how much laboratory automation has advanced. From the early days of handling routine and basic functions like blood chemistries, immunoassay and urinalysis, the cutting edge Life Sciences Studio can synthesize, test, and optimize compounds in pursuit of new drug therapies without human help.

At the Texas Medical Center (TMC) Innovation Institute in Houston, concept automation is tested and demonstrated. One of the most futuristic is YuMi, a product of ABB Robotics, which has a research hub there. Already in use in a handful of facilities, YuMi manages viral antigen testing in one lab and handles tissue, bone, and sterile fluid samples at another.

ABB predicts that by 2025, 60,000 nonsurgical robots, many as versatile as YuMi, will be in use in healthcare. 5,000 deployed in laboratories.

Robots,says Robin Felder, PhD, professor of pathology and associate director of clinical chemistry and toxicology at the University of Virginia School of Medicine, are “beginning to swallow up all of the manual parts of the laboratory.”

But more than that, with the rapid advances in artificial intelligence, Ben Miles, PhD, head of product at Strateos, sees a future where the robots will analyze data to initiate experiments on their own.

We’re not there yet. But as Dr. Dean Ho, Provost’s chair professor of biomedical engineering at the National University of Singapore, said, “At some point, we’ll be able to move beyond solely relying on pre-existing data and algorithm training and prediction making.”

Photo by Daan Stevens on Unsplash

[bdp_post_carousel]

Jun 6, 2023

What’s the Difference Between the COVID Vaccines?

With the approval last month of the Moderna vaccine by the Food and Drug Administration, we now have two COVID-19 vaccines available. Two more – one from Johnson & Johnson the other from AstraZeneca – are on the way and could be approved as soon as February.

Healthcare workers, residents of nursing facilities and some first responders have already received the Pfizer vaccine, the first one approved by the FDA. Moderna has begun shipping its vaccine with the first of the 25 million initial doses administered last month.

People eager to be immunized have inundated doctors’ offices and clinics asking when the vaccine will be available. The best answer is soon.

Which one, though, will you receive? And does it make any difference?

The answer to the first question is whichever vaccine can be obtained the quickest or, in some cases, whichever your health plan recommends. It really doesn’t make any difference to you.

Both vaccines require two separate doses to reach maximum effectiveness 21 days apart for Pfizer and 28 days for the Moderna version. Both protect about equally well. The FDA data shows Pfizer is 95% effective after both doses. Moderna is 94.1%.

Unlike most other vaccines, these two vaccines use pieces of protein from the SARS-CoV-2 virus to prompt the body to create antibodies. Conventional vaccines, like the annual flu shot, are manufactured from viruses typically grown in chicken eggs. These chicken grown viruses are then killed or weakened to become vaccines.

The COVID vaccines employ messenger RNA (mRNA), a newer technology. These vaccines “teach” the body to replicate the little bit of the CoV-2 protein, which, in turn, creates an immune response causing the body to make the antibodies that provide the protection against the virus.

The most significant difference between the Moderna and the Pfizer vaccines is how they must be stored. Both can survive for a few days in standard refrigeration. For longer periods, the less stable Pfizer vaccine must be kept in ultra-low temperatures below -94 F. That makes shipping and storing Pfizer’s vaccine somewhat more complicated, especially outside urban areas where the low temperature refrigeration is not easily available.

“At the end of the day, these two vaccines are pretty similar,” Dr. Thomas Russo, professor and chief of infectious disease at the State University of New York, tells Health. “Grab it while you can.”

Photo by Hakan Nural

[bdp_post_carousel]